Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway.

نویسندگان

  • Jen-Chieh Tsai
  • Mathava Kumar
  • Jih-Gaw Lin
چکیده

In the present study, anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria (SRB) was investigated and biotransformation pathways were proposed. SRB was enriched from anaerobic swine wastewater sludge and its abundance was determined by the fluorescence in situ hybridization (FISH) technique. Batch anaerobic biotransformation studies were conducted with fluorene (5 mg L(-1)), phenanthrene (5 mg L(-1)) and a mixture of the two (10 mg L(-1)). After 21d of incubation, 88% of fluorene and 65% of phenanthrene were biotransformed by SRB. In contrast to previous studies, a decrease in biotransformation efficiency was observed in the presence of both fluorene and phenanthrene. Throughout the study, sulfate reduction was coupled with biotransformation of fluorene and phenanthrene. However, no increase in bacterial cell density was observed in the presence of an inhibitor, i.e. molybdate. Identification of metabolites by gas chromatography-mass spectrometry (GC-MS) revealed that fluorene and phenanthrene were biotransformed through a sequence of hydration and hydrolysis reactions followed by decarboxylation with the formation of p-cresol (only in the phenanthrene system) and phenol. The metabolites identified suggest novel biotransformation pathways of fluorene and phenenthrene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments

Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment sam...

متن کامل

Biotransformation of Albendazole by Cunninghamella blakesleeana:Influence of Incubation Time, Media, Vitamins and Solvents

The present investigation was aimed at studying the effect of incubation period, media, vitamins and solvents on biotransformation of albendazole by Cunninghamella blakesleeana. The transformation was evaluated and identified by high performance liquid chromatography (HPLC) and the structures of the transformed products were assigned by liquid chromatography-tandem mass spectrometry (LC/MS/MS) ...

متن کامل

Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture.

Several reports have demonstrated biotransformation of tetrachloroethylene at low concentrations under strict anaerobic conditions by sequential reductive dechlorination (Fathepure and Boyd, 1988a; Freedman and Gosset, 1989). During this biodegradation, trichloroethylene (TCE), 1,1dichloroethylene, vinylidene chloride (DCE), and vinyl chloride (VC) are the intermediate products ; ethene or etha...

متن کامل

Determination of optimal phenanthrene, sulfate and biomass concentrations for anaerobic biodegradation of phenanthrene by sulfate-reducing bacteria and elucidation of metabolic pathway.

Anaerobic biodegradation of phenanthrene (PHE) was investigated using an enrichment culture consists predominantly of sulfate-reducing bacteria (87+/-6%). Aqueous biodegradation experiments were designed using the rotatable central composite design with five levels. The designed concentrations were 2-50 mg L(-1) for PHE, 480-3360 mg L(-1) for sulfate, and 5-50 mg L(-1) for initial biomass. Expe...

متن کامل

Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes.

Bioconversion (biotransformation) experiments on arenes (aromatic compounds), including various tricyclic fused aromatic compounds such as fluorene, dibenzofuran, dibenzothiophene, carbazole, acridene, and phenanthridine, were done using the cells of Escherichia coli transformants expressing several arene dioxygenase genes. E. coli carrying the phenanthrene dioxygenase (phdABCD) genes derived f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 164 2-3  شماره 

صفحات  -

تاریخ انتشار 2009